Welcome to the Ruban Laboratory
Learn about the research we do Facilities of the Ruban Lab Ruban Lab members Publications of the Ruban Lab Download talks, posters and other conference material Collaborations with other Labs worldwide Return to the Ruban Lab homepage
View photos in our Gallery Contact Details Visit the other Photosynthesis Groups at Queen Mary
Download Lectures and Teaching Material News and announcements from the Ruban Lab Consultancy advice



Arabidopsis- a model plant ChloroplastsPSII and LHCII Freeze Fracture faces observed by TEMStructure of LHCII

The Ruban Lab is engaged in mechanistic photosynthesis research. Our multidisciplinary approach applies molecular spectroscopy, biophysics, biochemistry and molecular biology to important problems in plant physiology. Specifically, the role of the various components (proteins, lipids, pigments) and macrostructure in the functions and adaptive mechanisms of the photosynthetic membrane related to light harvesting and photoprotection in plants and algae. In addition we are interested in the universal properties of carotenoids in biological membranes, the molecular dynamics of these molecules in the modulation of membrane protein conformation and their functions (summarised in the recent book: Ruban, A.V. (2012) The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting. Wiley-Blackwell, Chichester, ISBN: 978-1-1199-6053-9).

The Ruban Laboratory is currently pursuing research projects in the following areas:

  • The molecular mechanism of energy dependent non-photochemical quenching (NPQ) (Pascal et al. (2005) Nature 436, 134-137; Ruban et al. (2007) Nature 450, 575-578; Belgio et al. (2014) Nature communications 5, 4433)

  • The interaction of xanthophylls with photosythetic proteins, role of xanthophyll structure in controlling structure and functions of membrane proteins (Ruban et al. (2000) FEBS Lett, 477, 181-185; Ruban and Johnson (2010) Arch. Biochem. Biophys. 504, 78-85)

  • Use of the light harvesting antenna design in the assembly of synthetic biological light energy storage devices (Lee et al. (2014) Journal of CO2 utilisation 5, 33-40)

  • The macro-molecular structure and dynamics of the photosynthetic membrane (Ruban et al., (2003) Nature 421, 648-652; Johnson et al. (2011) Plant Cell 23, 1468-1479; Gortal et al. (2012) Plant Journal 69, 289-301; Belgio et al. (2015) Plant Cell & Environment doi:10.1111/pce.12528)

  • The interaction between various adaptation strategies of the photosynthetic light harvesting system to environmental conditions from light starved to light stressed (Ruban and Johnson, (2008) Photosynth. Res. 99, 173-183; Ruban (2015) Journal of Experimental Botany 66, 7-23)

  • Photosynthesis in cytoplasmic hybrids of Solanaceae family: nucleo-plastide interactions (Zubko et al., (2001) Plant Journal, 25, 627-639)

  • The protective effectiveness of NPQ (Ruban and Belgio (2014) Phil. Trans. Royal Society of London B 369, 20130222; Ware et al. (2014) Journal of Experimental Botany doi10.1093/jxb/eru477; Giovagnetti et al. (2015) Photosynth. Res. doi10.1007/s11120-015-0087-z; Ware et al. (2015) Photosynth. Res. doi10.1007/s11120-015-0102-4)