

FUNMIN

FUNdamental Studies of **MIN**eral Carbonation with Application to CO₂ Utilisation

By Devis Di Tommaso, Queen Mary Presented at ACT workshop 07.11.2019

CO₂ into added-value products

"CCUS can create new industries and markets through the use of carbon dioxide, such as chemicals, plastics, and building materials" *

CO, capture Mg sources Dissolution Generation CO₂ mineralization > 30 Mt/yr 36 Mt/vr CO_{2 (aq)} Viable **V** Formation ≤ Slow Fertilizer MgCO₃ > 25 Mt/vr **REUSE** Paper

Cambridge Carbon Capture Ltd technology (**CO2LC**) to store CO₂ in mineral form (MgCO₃)

^{*} The UK carbon capture, usage and storage (CCUS) deployment pathway, BEIS, 2018

The FUNMIN consortium

World expertise in mineralization guiding Industrial technologists to permanently mineralise CO₂

 $CO_{2 \text{ (gas)}} \rightarrow MgCO_{3 \text{ (solid)}}$

London ★

Cambridge

Industrial partner

Academic partner

FUNMIN facts

- Full Economic Cost: € 890k (€ 700k from ACT + € 190k in-kind)
- Duration: **30 months** (10/2019 03/2022)
- Academic partners: QMUL (coordinator), UGR, UO, UGA, UU
- Industrial partner: Cambridge Carbon Capture Ltd
- Associate partners: National Physical Laboratories (UK), McMaster University (Canada), University of Hong Kong (China), Seoul National University (Korea)
- ISIS Neutron and Muon Source facility at Rutherford Appleton Laboratory (UK)

Mineral carbonation

Mineral carbonation

CO₂ Utilization Priority Research Direction U5: Accelerating Carbon Mineralization by Harnessing the Complexity of Solid-Liquid Interfaces, in "Mission Innovation Carbon Capture, Utilization, and Storage Workshop"

The objectives of FUNMIN

The FUNMIN approach

Complementary **atomistic simulations** & **spectroscopic measurements** to reveal the molecular-level processes controlling MgCO₃ formation: Mg-dehydration, MgCO₃ nucleation & growth.

THEORETICAL SIMULATIONS

Theory: MD, DFT, SS

Exp: TEM, Raman, NCS, SANS/WANS

EMPIRICAL DETERMINATIONS

Project implementation

Core scientific activities (WP1-3) to characterize the molecular processes controlling magnesite crystallization; applied component (WP4) to optimise process conditions

Interaction between the scientific (WP1-3) and practical (WP4) components of the project. WP1: Mg-dehydration; WP2: MgCO₃ nucleation; WP3: Magnesite Growth; WP4: Upscaling

Project implementation

Project implementation

		N	No. Milestone Title																											
WP = Working Package T = Task			-																											
T = Task D = Deliverables		I N	M1 Assessment & calibration of atomistic models																											
M = Selected milestone indicating key deliverables																														
W - Selected limestone malcating key deliverables		I N	M2 First ever Neutron Compton scattering experiment for tracking																											
	Location	Act	MgCO ₃ particle formation complete																											
WP1 Mg-Dehydration				IVI	gC	\mathbf{O}_3	P	an	ICI	еı	OH	IIIa	uc	ж	OH	npi	ец)												
T1.1.1 Mechanism: DFT, AIMD and AIMμD calculations	QMUL	S		_			,		11.4							N 4 -								41						
T1.2.1 Assessment & calibration of forcefields	QMUL	s N	M3 Effect of additives promoting Mg-dehydration, on the kinetics of																											
T1.3.1 Kinetics of Mq-dehydration in elect solutions	QMUL	S		cr	vet	alli	iza	atic	าท	of	ar	hv	dr	ous	: a	nd	hv	ďr	ate	h	M	α- <i>(</i>	าล	rha	าทว	ate	nŀ	าลง	200	: I
T1.4.1 AIMD of VDOS of Mg2+ in elec solutions	QMUL	S		Oi	ySt	am	120	<i>a</i> tic	<i>)</i>	OI.	aı	у	ui	out	J	ııa	ııy	ui	all	,u	1 V I	9 '	Ju		<i>)</i> 1 1 C	110	Pi	iu		'
T1.4.2 THz expt of (sub)ps H2O dynamics	QMUL/NPL	E. N	M4 Theoretical model of MgCO ₃ nucleation from solution developed																											
T1.4.3 INS expt of the low-frequency H2O dynamics	UGA	E	INIT THEOREGICAL HICUEL OF MIGOO3 HUCIEATION HOITI SOLUTION GEVELOPED																											
WP2 MgCO3 nucleation			15	ln	cit		rم	حاد	inc	. A	fn	200	sh.	ani	ച	nr	on	۸r	tio	٠ ,	2	ha	n	10C	. +k	ر م	·oir	_		
T2.1.1 Mechanism: DFT and AIMD calculations	QMUL	S	M5 In-situ tracking of mechanical properties & changes therein																											
T2.2.1 Structure & stability of MgCO3 nuclei	QMUL	S	M6 Mechanistic model of the magnesite growth in aqueous																											
T2.3.1 Chemical analysis of hydrated/anhydrous PNC	UGA	E IN																												
T2.3.2 Size & morphological PNC analysis	UGR	E.	electrolyte solutions																											
T2.4.1 Tracking particle formation (NCS, WANS/SANS)	QMUL/RAL	E.																												
WP3 MgCO3 growth			M7 Site-specific surface complexation model for calcite developedM8 Site-specific growth kinetic model for magnesite																											
T3.1.1 Solid state Magnesite crystal characterization	UO	E.																												
T3.1.2 X-ray PDF of anhydrous and hydrated MgCO3	UO	E. N																												
T3.1.3 Solid-state DFT calculations magnesite crystals	UΟ	SI																												
T3.2.1 MD of struct heterogeneous MgCO3 surfaces	QMUL/UU	S																												
T3.2.2 AFM experiments of magnesite growth	UGR	E. IN	M9 Factors catalysing magnesite crystallization under mild, non-																											
T3.2.3 QENS experiments of surface H2O dynamics	QMUL/RAL	E.	hazardous, non-toxic conditions identified																											
T3.3.1 Development of surface complexation model	UU	Si						•,										•	•											
T3.4.1 Development of growth kinetic model	UU	SIM																		VI5										D3.4
WP4 Practical upscale			S	0	N	D	J	F	М	ΑI	М	J.	/	A S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N I	D .	J F
T4.1.1 In-situ Raman analysis of nucleating particles	UGA	EXP									D	4.1																		
T4.2.1 Characterisation of sample batches during mineral	QMUL/RAL	EXP																			04.2									
T4.2.2 Formulating of metrics	QMUL/RAL	EXP																												M9
T4.2.3 NCS, SEM and TEM imaging of samples	QMUL/RAL	EXP																												
T4.3.1 Industrial demonstration rig experiments	CCC/QMUL	EXP																				_								D4.3
WP5 Management & dissemination			S	0	N	D	J	F	М	ΑI	М	J.	/	A S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N I	D .	l F
T5.9 Organise project's meetings				UK															ES											FR

FUNMIN Outreach plan

Dissemination audience	Dissemination Goal	Methods of Dissemination							
Other Researchers working on CCUS	Understanding	Presentations and Professional Networking; Academic journals; Social media; Project's website.							
Policy makers	Awareness, Understanding, Action	Formal Reports; Project meetings; Sharing research outputs.							
Future Funding Organisations	Awareness, Understanding, Action	Formal reports; Social media; Sharing research outputs.							
The Wider Community	Awareness	Social media; Project's website; Sharing research outputs; Outreach.							

Objectives of our dissemination strategy:

- Inform other researchers (Chemists, Geoscientists, Industrial scientists) working on CCUS or related fields
- Bridge the gap between research and policy
- Shape funding strategy of UK and EU research councils towards CO₂ mineralization technologies
- Interact with the public

FUNMIN Outreach plan

Presentation & professional networking

- Presented at the FIRED-Up event (06.11.2019)
- Press release on FUNMIN with www.consciouscomms.com
- Kick-off meeting in London (13.12.2019)
- Canada-UK Communities of Interest: Commercial CO₂ Capture and Use Opportunities (26.11.2019)
- Conferences and events organised by UKCCSRC, BACG, TYC and NMUSN

Website & Social media

http://research.sbcs.qmul.ac.uk/d.ditommaso/funmin

@FUNMIN_CO2

Sharing research outputs

 Conference papers, software, posters, presentations, reports, protocols, preprint on FUNMIN website

FUNMIN contribution to commercialisation of CO₂ mineralization

Scientific challenge

– What are the fundamental processes optimising the aqueous formation of MgCO₃ at low temperature in nature?

Technical challenge

— What are the process conditions that could catalyse magnesite formation under mild conditions?

Commercial challenge

Can we develop cost-effective processes for the selective conversion of CO₂ into magnesite under mild, non-hazardous, and non-toxic conditions?

Provide (theory & expt) tools to the CO₂ mineralization industry

To raise its impact and competitiveness

Interface between Cambridge Carbon Capture existing carbonation rig and the neutron beam facility

Special Nickel-Chromium alloy for high pressure conditions

Gas handling apparatus in ISIS

b) Stainless steel reaction cell for neutron measurements of heterogeneous catalyst samples (**Johnson Matthey Technol. Rev.**, 2016, 60, 132)

Rutherford Appleton Laboratory (UK)

Interface between Cambridge Carbon Capture existing carbonation rig and the neutron beam facility

Special Nickel-Chromium alloy for high pressure conditions

Gas handling apparatus in ISIS

b) Stainless steel reaction cell for neutron measurements of heterogeneous catalyst samples (**Johnson Matthey Technol. Rev.**, 2016, 60, 132)

Rutherford Appleton Laboratory (UK)

Status of FUNMIN project

Contracts and Consortium agreement

- UK and France contracts in place. Consortium agreement signed. Spanish contract will be in place early 2020
- QMUL hired Computational Chemist (PDRA-1) and Physical Chemist (PDRA-2)

First results

- Proposals for neutron experiments submitted to ISIS
 Neutron and Muon Source (UK)
- Awarded IAA Grant to develop a flow-cell for neutron scattering measurements of CO₂ mineralisation
- Water exchange reaction pathways around Mg²⁺ (D1.1)
 Dynamics of water around Mg²⁺ as a function of solution composition (D1.3)
- Assessment & calibration of interatomic force fields (M1)

Contact us

Queen Mary University of London

Department of Chemistry
Faculty of Science and Engineering
Mile End Road
London E1 4NS

Devis Di Tommaso

FUNMIN Project Coordinator d.ditommaso@qmul.ac.uk

Acknowledgements

This project has been subsidized through ACT (EC Project no. 691712), by BEIS (UK), ADEME (FR), MINECO-AEI (ES)

http://research.sbcs.qmul.ac.uk/d.ditommaso/funmin