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        Introduction 

 The relationship between the size of a particular body part or 
organ and the size of the whole organism bearing that character 
is an important and informative aspect of an organism’s biology, 
and such relationships have been studied for many years 
( Huxley, 1932; D’Arcy Thompson, 1942 ). This relationship is 
usually referred to as the  scaling relationship  ( Emlen & Nijhout, 
2000 ) or the  static allometry  ( Huxley, 1932; D’Arcy Thompson, 
1942; Emlen & Nijhout, 2000 ) of that body part. The majority 
of such relationships are straight lines, but in the holometabo-
lous insects a number have been described that deviate from 
simple linearity (   Fig.   1 ), a phenomenon that I shall refer to as 
 non-linear allometry  [also referred to as  complex allometry  
( Nijhout & Wheeler, 1996 )]. Complex allometries are of interest 
to biologists because they can tell us important things about the 
biology of the species in question. Distributions of data points 
that can be divided into more than one distinct group, for exam-
ple, can indicate polyphenism, whereby individuals develop 
into two or more morphs depending on the environment they 
experience or their genetic makeup ( Eberhard & Gutierrez, 1991; 

Emlen & Nijhout, 2000 ). Other possible phenomena that can be 
indicated by deviations from simple linearity in static allometries 
are competition for limited resources within the pupae of meta-
morphosing holometabolous insects ( Nijhout & Wheeler, 1996; 
Knell  et al. , 2004 ) and changes in the nature of selection on 
body parts with increasing body size ( Pomfret & Knell, 2006 ). 

 In some cases, it may be possible to assign individuals to 
morphs  a priori , in which case there are no problems with ana-
lysing allometric data, and standard techniques can be followed. 
Usually, however, there is some degree of uncertainty regarding 
allocation to morphs or even as to whether there is a  dimorphism 
at all. Typically, statistical analysis is applied to these data sets 
in order to answer one or more of the following questions: (i) Is 
there evidence of polyphenism, or is the scaling relationship 
simply curved or even indistinguishable from a straight line? 
(ii) If there is polyphenism, is it possible to identify morpholog-
ical switchpoints (usually a threshold body size) at which 
animals switch from one morph to another? (iii) Which individ-
uals should be classified as members of which morph? and 
(iv) Do switchpoints differ between populations of the same 
species? This is usually done using analyses suggested either by 
 Eberhard and Gutierrez (1991)  or  Kotiaho and Tomkins (2001) , 
although other approaches have been used as well ( Rowland 
 et al. , 2005; Cook & Bean, 2006 ). Whereas the analysis of what 
might be termed  simple  allometries has been discussed at length 
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( Warton  et al. , 2006 ), there has been very little critical examina-
tion of the techniques used to analyse non-linear allometries. 
The present paper examines the use of these techniques for 
the detection and further analysis of non-linear allometries, 
with particular emphasis on dimorphic allometries, and makes 
recommendations for the best way to analyse a variety of differ-
ent sorts of such non-linear allometric relationships. The use of 
these analyses is illustrated by two worked examples, and three 
further worked examples are provided as online Supporting 
Information  .  

  Kinds of non-linear allometry 

  Figure   1  shows scatterplots of non-linear allometries from three 
insect species. It is obvious from a glance at this figure that there 
is substantial variation in these relationships, and the form of 
the relationship is an important consideration in deciding which 
analysis to use. The simplest and most important division is into 
what can be called continuous and discontinuous allometries. 
Continuous allometries are those where the allometric relation-
ship can be regarded as a single, albeit not necessarily straight, 
line. These allometries can include simple curved relationships 
( Fig.   1a ), ones with a switchpoint where the slope of the relation-
ship changes abruptly [as is claimed, for example, for the horned 
beetle  Onthophagus binodis  ( Cook, 1987 ; see also Supporting 
Information Example 1) and for the fig wasp  Sycoscapter australis  
( Bean & Cook, 2001 )] and also those that show sigmoid patterns 
such as  Onthophagus taurus  ( Fig.   1b ). Discontinuous allometries 
are those that are divided into two (or more) discontinuous 
groups, which may be more or less separated from each other 
and which are not adequately modelled by a continuous line. 
Such discontinuous allometries are described from many dynas-
tid beetles ( Emlen & Nijhout, 2000 ), from a fig wasp ( Cook & 
Bean, 2006 ),  Fig.   1c , and from the earwig  Forficula auricularia  
(i.e.  Tomkins, 1999 ; see also Supporting Information Example 3). 

 Discontinuous allometries can be further divided according 
to the extent of overlap in the  X  and  Y  variables between the two 
groups: some have no overlap, some have overlap in  X  (in other 
words, both morphs are present at some body sizes) and some 
have overlap in both  X  and  Y , as in  Fig.   1c . It must be remem-
bered that these divisions are not absolute and some cases are 
difficult to classify: see worked example 2 for one of these.  

  Is there a non-linear allometry? 

 Traditionally, simple allometric relationships are described by 
the equation  y     =     bx k  , where  y  is the size of the organ or body 
part,  x  is the size of the whole organism and the exponent 

      

     Fig.   1.     A variety of non-linear allometries. (a) A smoothly curvilinear 
relationship. Log horn length plotted against log body length for the 
dung beetle  Euoniticellus intermedius . Data from  Pomfret and Knell 
(2006) . (b) A sigmoid relationship. Log horn length plotted against log 

pronotum width for the dung beetle  Onthophagus taurus  (data provided 
by D. Emlen). (c) A discontinuous relationship with a reasonable 
amount of separation between the morphs and overlap between the two 
morphs in both body size and mandible length. Log mandible length 
plotted against log head width for an undescribed species of fi g wasp 
( Cook & Bean, 2006 ).   
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 k   describes the way that organ size scales with body size,  usually 
estimated as the slope of a straight line fitted to a log – log plot 
( Huxley, 1932; Gould, 1966; Simmons & Tomkins, 1996; Knell 
 et al. , 2004; Tomkins  et al. , 2005; Warton  et al. , 2006 ). The 
slope of the line is often estimated using major axis (MA) or 
standardised major axis (SMA) regression instead of conventional 
linear regression, because these techniques give more accurate 
estimates of the slope when there is measurement error associ-
ated with both the  X  and  Y  measurements. This is often the case 
in comparative data for multiple species ( Warton  et al. , 2006 ). 
Comparable techniques are not yet available for non-linear 
 allometries, however, so the rest of this paper will focus on 
 techniques based on conventional regression techniques. This is 
unlikely to present a problem so long as measurement error is 
relatively small, and if a particular dataset is likely to have high 
measurement error, this can be remedied by using average values 
from multiple, independent measurements (D. Warton, pers. 
comm.). Thus, in this context the question ‘is there a non-linear 
allometry?’ is equivalent to asking ‘if organ size is plotted 
against body size on a log – log plot, is the relationship  adequately 
explained by a simple linear regression?’. 

  Eberhard and Gutierrez (1991)  fitted quadratic models to 
 untransformed datasets as an initial test to detect non-linear 
 allometry, with a statistically significant quadratic term indicating 
a possible dimorphism. This approach has often been used since 
(e.g.  Eberhard  et al. , 2000; Hanley, 2001; Hongo, 2003 , in press; 
 Tomkins  et al. , 2005; Harvey & Gange, 2006; Okada 
 et al. , 2006 ). The use of this test is questionable: there is an 
implied assumption that all non-linear allometries will be better 
described by a quadratic curve than by a straight line. This is not 
always the case. Dimorphic allometries that give roughly sym-
metrical plots around the major axis will not lead to a significant 
quadratic term, as seen with the data from  Lucanus cervus  
analysed in Supporting Information Example 2. Sigmoid allom-
etries can also return a non-significant quadratic term ( Miller & 
Wheeler, 2005 ). 

 Rather than relying on a single statistical test, it is better to 
recall the question as posed above, whether organ size plotted 
against body size on a log – log plot is adequately explained by a 
simple linear regression. This reminds us that we are dealing 
with a very common question raised in data analysis, and that 
there are standard methods for assessing how good a fit a linear 
regression gives. The best place to start is undoubtedly by exam-
ining a log – log scatterplot visually, possibly with an appropriate 
non-parametric smoother such as a cubic spline fitted to the data 
to aid in the visualisation of any patterns. In many cases this will 
indicate whether there is a non-linear allometry present, espe-
cially if the sample size is a reasonable one (see, for example, 
 Fig.   1b,c ). One caveat is that changing the relative  X  and  Y  
scales on such a plot can emphasise or minimise apparent 
 differences in slope. Ideally they should be the same, but this 
may not be possible, in which case care should be taken in the 
interpretation of any apparent changes. If this is a problem, then 
plots of standardised normal deviates could be used to remove 
such scale-dependent effects. 

 If further analysis is required to demonstrate whether or not 
there is deviation from a straight line, then a linear regression 
should be fitted to the data and the standard diagnostic procedures 

used, in particular an examination of plots of residual versus 
fitted values. If a satisfactory fit cannot be gained following this 
procedure, then it will be necessary to identify a suitable model 
to fit to the data that might describe the patterns better than a 
simple linear model, and to compare the goodness of fit of both 
models using standard methods, as discussed in the next section. 

 Examination of a log – log scatterplot will often also allow a 
decision to be made regarding whether analysis methods  suitable 
for a continuous or a discontinuous relationship should be used. 
There will be cases where this is not clear, and in these cases 
both approaches should be used and final models compared to 
see which gives the best and most parsimonious fit.  

  Analysis of continuous relationships 

 An important question for biologists analysing continuous allom-
etries that are not well described by a straight line, is whether the 
relationship between organ size and body size is smoothly curvi-
linear, or whether it is in fact more accurately described by two 
straight lines that meet at a  switchpoint . This question is import-
ant, because curvilinear relationships can be predicted to arise 
from competition for resources between rapidly growing body 
parts in the metamorphosing insect ( Nijhout & Wheeler, 1996; 
Knell  et al. , 2004 ), whereas the presence of a switchpoint could 
indicate some physiological change in the control of development 
that depends on body size. This could possibly be a  reprogram-
ming  event ( Nijhout & Wheeler, 1996 ). 

 The model for analysing continuous relationships described in 
 Eberhard and Gutierrez (1991)  assumes that the relationship is 
best described by two straight lines with a single switchpoint. 
It uses a simple numerical algorithm to find the switchpoint that 
leads to the highest  r  2  value. This procedure is unsatisfactory for 
two reasons. Firstly, it does not produce confidence intervals 
for the estimated switchpoint, and secondly, because the switch-
point is estimated before the final model is fitted, incorrect 
values for the degrees of freedom and for the Akaike information 
criterion (AIC; see below) are returned. The question of how to 
identify points in datasets where the response of the  y -variable to 
one or more  x -variables changes suddenly, is one that has been 
the subject of some interest from statisticians, who usually refer 
to the problem as  breakpoint ,  segmented  or  change-point  regres-
sion ( Kim & Siegmund, 1989; Muggeo, 2003 ). A variety of alter-
native techniques and software are available to carry out such 
analyses, for example Segcurve ( Luwel  et al. , 2001 ), the Segmented 
package for R ( Muggeo, 2003 ) and Segreg ( Oosterbaan, 1994 ), 
available from  http://www.waterlog.info/segreg.htm . 

 The estimated switchpoints produced by these alternatives 
are usually very similar. For the data shown in    Fig.   2 , for exam-
ple, both Segmented  1   and the Eberhard and Gutierrez method 
as implemented in the  switchpoint  function for R (originally 
 written by Ken Wilson of Lancaster University and available 
from the author) gave identical estimates of the switchpoint up 
to the fourth significant figure. Segmented ( Muggeo, 2003 ) 
treats the switchpoint as a true parameter, estimates a standard 
error for the switchpoint and fits a model with the correct 
number of degrees of freedom, and it is recommended that this 
package, or an equivalent be used. 
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 Once a model with a switchpoint has been fitted to the 
data, its explanatory power can be compared with appropriate 
curved or simple linear models. Many solutions to the problem 
of choosing between different statistical models have been 
suggested: see, for example  Burnham and Anderson (2002); 
Johnson and Omland (2004)  and  Olden and Jackson (2000) . 
The examples analysed here use the AIC [calculated as 2    ×    
( – log likelihood)    +    2    ×    the number of parameters in the model] 
for model comparison. Models with lower AIC scores are better 
descriptors of the relationships between the variables, and when 
comparing two models a difference between AIC scores of more 
than two is considered to be evidence of a clear difference 
between them. Models with AIC scores that differ by less than 
this value are considered to be indistinguishable from each other 
( Burnham & Anderson, 2002 ). Note that this is not the only 
method that can be used to select the most appropriate model. 
For example, if significance tests are required then fitted models 
can be compared using partial  F -tests, or other techniques such 
as cross-validation ( Shao, 1993 ) could be used. Whatever the 
technique used, identifying the model that best predicts the data 
will allow the questions ‘Do my data show a dimorphism?’ and 
if so, ‘Where is the switchpoint?’ to be addressed, and if a break-
point regression is the best model, the standard errors produced 
by the breakpoint regression will give an indication of how good 
the estimate of the switchpoint is. 

 The next aspect of the analysis to look at is classification into 
different morphs. For continuous relationships, individuals can 
be classified into different morphs by asking whether they are 
larger or smaller than the body-size threshold. The standard 
errors (or the 95% confidence limits given by  ± 1.96 SE) of the 
threshold can be used to indicate individuals for whom the 
classification into one or the other morph is uncertain. 

 One problem with classifying individuals into morphs on the 
basis of their body size arises when the slope of the allometric 
relationship is especially steep above the switchpoint. In the 
case of a dimorphism such as that seen in  Fig.   1b , this can lead 
to some individuals with larger traits being classified as  minors  
and some with small traits being classified as  majors , or vice 
versa. For some body sizes there is a very wide range of corre-
sponding horn sizes. In an attempt to remedy this, an alterna-
tive approach for classifying individuals into separate morphs 
was proposed by  Kotiaho and Tomkins (2001) . In this proce-
dure, a switchpoint is estimated based on a regression not of 
morphological character on body size (as in the other analyses 
discussed here) but of body size on morphological character. 
Division of individuals into morphs is therefore based on char-
acter size rather than body size. Simulation results suggest, 
however, that the position of the switchpoint estimated by this 
method is sensitive to small stochastic variations in the dataset 
( Fig.   3 ), indicating that this analysis is not a reliable one for 
this purpose. There are also problems associated with the as-
sumptions behind regression that arise from regressing  X  on  Y  
rather than  Y  on  X : the two are very different things. If this situa-
tion arises, in the absence of behavioural or physiological 
evidence indicating where the difference between the two 
morphs lies, the best approach may be to classify those indi-
viduals within the 95% confidence intervals as being interme-
diate between the two morphs. 

 The final question often asked in studies of dimorphic allom-
etries is whether two or more populations differ in the position 
of the threshold value. This can be ascertained in one of two 
ways. Firstly, a  t -value can be calculated from the estimated 
switchpoints and standard errors given by Segmented, and then 
compared with a  t  distribution on ( n  1     –    4)    +    ( n  2     –    4) d.f., where 
 n  1  and  n  2  are the sample sizes of the two populations. This has 
to be treated with caution (V. Muggeo, pers. comm.) because the 
standard errors are only reliable for large sample sizes and/or 
clear cut relationships. The relevant sampling distribution can 
vary with the location of the breakpoint and a number of other 
variables. An alternative is to calculate bootstrap 95% confi-
dence intervals for the difference between the two switchpoints, 
and to conclude that there is a significant difference between the 
two if the 95% CIs do not overlap zero. In practice, if Segmented 
is used for this the algorithm fails to converge in some of the 
bootstrap replicates, meaning that the results may be unreliable. 
Since the problems with the Eberhard and Gutierrez method do 
not affect the estimate of the switchpoint, it is advisable to use 
this method for this particular analysis.  

  Sigmoid allometries 

 Many continuous non-linear allometries are sigmoid, as in 
 Fig.   1b . These are usually regarded as being composed of two 
elements. Firstly, the part of the curve where the slope increases 
is thought to be either a breakpoint relationship or an exponen-
tial increase in trait size with body size ( Tomkins  et al. , 2005, 
2006; Moczek, 2006 ) ( Fig.   2 ). Secondly, the part of the curve 
where the slope decreases back towards zero as body size 
increases [these are the animals described as  asymptotic  majors 

      

     Fig.   2.     Log horn length plotted against log pronotum width for the dung 
beetle  Onthophagus taurus , originally published in  Moczek (2006) . The 
solid line shows a fi tted switchpoint model and the dashed line a quadratic 
model (the power model referred to in the text is not shown for clarity). 
The vertical dotted lines indicate 95% confi dence intervals for the switch-
point. See worked example 1 for details of the analysis.   
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in  Tomkins  et al.  (2005) , although in practice only a few of these 
curves can be described as asymptotic] may be because of 
competition for resources in the pupa ( Tomkins  et al. , 2005 ). 
However other mechanisms may also contribute to this, such 
as constraints on horn length or an uncoupling of horn length 
and body size ( Pomfret & Knell, 2006 ). It is probably best to 

analyse these components of the curve separately. If an estimate 
of a switchpoint is required, then only those animals that fall on 
the lower part of the curve before the slope begins to decrease 
should be included in the analysis. This can then follow the 
model comparison procedure outlined above, as in the analysis 
of the data in  Fig.   2 . 

      

     Fig.   3.     A comparison of switchpoints estimated using the Eberhard and Gutierrez method and the Kotiaho and Tomkins method. (a) and (b) show 
results from a simulation of continuous allometries, whereas (c) and (d) are derived from a simulation of discontinuous allometries. For (a) and (b), 1000 
simulated bivariate datasets were generated with an  x -variable mean of 15 and standard deviation of 4. The slope of the  y -variable was 0.5, with an 
intercept of zero, unless the  x -variable was greater than 15, in which case the slope was 1.5. Normally distributed random noise with a standard deviation 
of 1 was added to the  y -variable. This gave both  x  and  y  variables with approximately equal ranges. Thus, the true switchpoint for the  x -variable was 15, 
and the true switchpoint for the  y -variable was 7.5. (a) shows the frequency distribution of estimated switchpoints using the Eberhard and Gutierrez 
method. The distribution is centred around the true switchpoint and nearly 98% of the estimated switchpoints lie within one unit of this value. (b) shows 
the frequency distribution of the switchpoints estimated using the Kotiaho and Tomkins method. The range of estimates is much wider, with only 44% 
of them lying within one unit of the true switchpoint. Furthermore, there is a general tendency to overestimate the switchpoint, with the mean estimate 
being 8.35. Further simulations indicate that this pattern is robust to changes in the position of the switchpoint or to changes in the difference between 
the slopes above and below the switchpoint, including the case where the slope above the switchpoint is less than that below. Note that the switchpoints 
were calculated using the numerical search method described by Eberhard and Gutierrez because in most cases the Segmented algorithm failed to 
converge when calculating switchpoints for the Kotiaho and Tomkins approach. For the simulation of discontinuous data, 1000 datasets were once again 
generated. The mean value of the  X  variable was 15, with a standard deviation of 3. Below the switchpoint, which was set at 15, the  Y  variable was 
generated as being equal to the  X  variable (i.e. a slope of 1 and an intercept of zero), with normally distributed noise with a standard deviation of 
1 added. Above the switchpoint the  Y  variable was calculated as 1.5  X  (the slope of the relationship is greater above the switchpoint) plus 3 (which 
generates a discontinuous relationship with a reasonable amount of separation) plus normally distributed random noise with a standard deviation of 1. 
Thus the true switchpoint for both variables was 15, although a small amount of increased variation in  Y  should be expected because of the random 
error added to the datapoints. Note that the estimates in both cases were constrained to be between 12 and 18 in order to allow the large number of 
calculations to be carried out, because these procedures occasionally produce errors when switchpoints a long way from the centre of the dataset are 
calculated. (a) shows the distribution of switchpoints calculated using the Eberhard and Gutierrez procedure for discontinuous data, and (b) shows the 
distribution of switchpoints generated using the Kotiaho and Tomkins approach. The difference between the distributions is striking, and the Kotiaho 
and Tomkins approach is clearly seriously overestimating or underestimating the switchpoint quite frequently.   
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 It is also possible to fit a model to the whole sigmoid curve. 
 Emlen (1996)  fitted a modified logistic model to horn length 
data for  Onthophagus acuminatus  in order to allow residual horn 
lengths to be calculated for individual beetles. This allowed bee-
tles to be selected on the basis of horn length independent of 
body size.  Moczek  et al.  (2002)  fitted a model of the form 

   
horn length

body size

body size
= +

+
y

a

c

b

b b0

( )
( )  

 to data from  Onthophagus taurus  using non-linear regression. In 
this case,  c  gives the body size at the lower inflection point on the 
curve, and this value was used as an indicator of the location of 
a switchpoint. While this approach may give a reasonable fit to 
the overall dataset, its use is questionable, firstly because it 
assumes a smoothly curvilinear transition at the switchpoint, and 
as we have seen, this is not necessarily the case. Secondly be-
cause there is no good reason to assume that these relationships 
are symmetrical. There are many non-symmetrical curves that 
could be fitted to such data, but the simplest option in many cases 
will be to treat the two parts of the curve separately. 

 Finally, sigmoid allometries lead to markedly bimodal distri-
butions of trait size ( Emlen, 1994; Rowland  et al. , 2005 ), and an 
obvious way to separate morphs is by finding the minimum 
point between the two modes. Eberhard and Gutierrez argue 
that distinguishing morphs on the basis of frequency distribu-
tions is to be avoided, firstly because of the possibility of bias 
in datasets (collector bias or different rearing conditions, for 
example, could lead to erroneous bimodal distributions), and 
secondly because of the statistical difficulty of separating 
unimodal and bimodal distributions. Nonetheless, in some cases 
of sigmoid allometry, and especially when body size can be 
shown to be unimodal when trait size is clearly bimodal, such an 
analysis can perhaps be justified [see  Rowland  et al.  (2005)  for 
a maximum-likelihood approach to doing this]. There are a 
number of difficulties with this approach, however. Firstly, it 
provides no information about the location of any switchpoint. 
Secondly, and more importantly, the location of the second 
mode in the distribution may well be a consequence of a decline 
in allometric slope arising from competition for resources within 
the pupa ( Knell  et al. , 2004 ). This is a separate process to the 
differentiation between the morphs, and will strongly affect the 
location of the minimum point between the two modes. In a 
system where the decline in slope is weak due to relatively 
abundant pupal resources, the minimum will be at a greater trait 
size than in a system where the decline in slope is pronounced.  

  Worked example 1: horn length in Onthophagus 
taurus 

  Onthophagus taurus  is a dung beetle. Originally from the 
Mediterranean region, it has been introduced into Australia and 
America. Large (major)  O. taurus  males carry two curved horns 
on their heads that they use during combat with conspecific 
males for access to females. Small (minor) males have reduced 
horns and use sneak tactics to acquire matings. There has 
recently been some controversy over the question of whether 
the dimorphism in these beetles is generated by a developmental 

reprogramming event at a certain body size or simply by an 
exceedingly steep exponential allometric growth of the horns 
( Tomkins  et al. , 2005 , 2006;  Moczek, 2006 ). Most of the 
arguments regarding the presence or absence of switchpoints 
have been made on the basis of visual inspection of scatterplots, 
however, and none of the authors in this debate have applied 
rigorous statistical analysis to support their claims. Here, I 
analyse a dataset of horn length versus pronotum width origi-
nally published by  Moczek (2006)  and shown in  Fig.   2 . These 
beetles actually display a sigmoid allometry (as in the other 
 O. taurus  dataset in  Fig.   1b ), but here the curve is treated 
as having two components and all the beetles with a log horn 
length of greater than 1 were excluded from the analysis. This is 
because these beetles show a declining slope with increasing 
body size [the   asymptotic majors  of  Tomkins  et al.  (2005) ]. 

 A switchpoint model was fitted to the data using the Segmented 
package ( Muggeo, 2003 ) in R 2.3.1 (The R Foundation for 
Statistical Computing  http://www.R-project.org ) and compared 
with a quadratic model and a power model of the form  y     =     ax b   
fitted by the usual means. The switchpoint model gave an esti-
mated switchpoint of 1.537 with a standard error of 0.011, and re-
turned an AIC score of 19.09, substantially less than the quadratic 
model (26.02) and the power model (68.86). Diagnostic plots re-
vealed no especially influential points that might require closer 
investigation. On this basis the switchpoint model is the best de-
scription of the relationship between horn length and pronotum 
width in this dataset. This means that this dataset supports the idea 
that a developmental  reprogramming  event is occurring when the 
beetles reach a certain size (see the  references given above for dis-
cussion on what the best horn measurement methodology is and 
how this can influence whether a switchpoint is found). 

 A second example of analysis of a continuous relationship 
(horn size in  Onthophagus binodis ) is given in Supporting 
Information Example 1.  

  Discontinuous relationships 

 If visual inspection of a scatterplot suggests that a discontinuous 
relationship is present, it is sometimes the case that the disconti-
nuity is sufficiently obvious that further analysis is not needed 
to demonstrate its existence [as in the case of the dynastid beetle 
 Chalcosoma atlas  ( Emlen, 2001; Kawano, 2002 )]. Often, 
though, further analysis is necessary. In order to answer the 
question ‘do my data show a discontinuous relationship?’ it is 
necessary to fit a model that incorporates the discontinuity and 
compare its explanatory power with an alternative model or 
models that do not incorporate a discontinuity. In order to do 
this, one needs to produce some rule for assigning individuals 
(i.e. datapoints) into different morphs. 

 The original analysis suggested for discontinuous allomet-
ric data is the procedure outlined by Eberhard and Gutierrez. 
This involves fitting their model 2 to the data, which takes the 
form: 

        Y  =    �   0    +     �   1   X   +     �   2   (  X   –    X  0   )  D   +     �   3   D   +    e    .     

 This assigns individuals into morphs on the basis of a body size 
switchpoint at  X  0 .  D  is zero if the  X  value is less than the switch-
point and 1 if it is greater than or equal to it. The switchpoint 
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is estimated by fitting the model for a variety of values of  X  0  and 
finding the value of  X  0  that led to a fit with the lowest value for the 
adjusted  r  2 . 

 Eberhard and Gutierrez suggested that once the switchpoint had 
been identified, the fitted model could be compared to one that did 
not include the   �   3  term using an  F -test, with a significantly better 
fit for the model with the   �   3  term indicating the presence of a dis-
continuity. This approach suffers from the same problems as the 
corresponding analysis of continuous data, however. The number 
of degrees of freedom for the fitted  models (and their AIC scores) 
will be incorrect, because the switchpoint is estimated separately 
and not treated as a real parameter in the model. Furthermore, as 
noted by the authors, this approach is based on the assumption that 
overlap in the  x -variable at the switchpoint is negligible. The simu-
lations shown in  Fig.   3  suggest that when this is the case, good 
estimates of the switchpoint are returned, but both further simu-
lation (not shown) and analyses of real datasets (see Supporting 
Information Example 2) indicate that if there is overlap in the 
 x -variable then this approach tends to identify one end of the 
 region of overlap as the switchpoint. Clearly, if there is overlap 
in the  x -variable then the whole concept of a single body size 
switchpoint is questionable, but even if it is argued that the 
switchpoint is really the centre of a region of body sizes where 
animals can develop into either morph, this analysis does not 
usually identify that point. 

 One way of approaching the problem of overlap between 
morphs in the  x -variable is to use the same model, but with body 
size as the response variable. Estimating a threshold size for the 
morphological character is believed to be dimorphic in order to 
distinguish between morphs ( Eberhard  et al. , 2000; Kotiaho & 
Tomkins, 2001 ). This analysis also leads to fitted models with 
incorrect degrees of freedom and AIC scores, and simulations 
indicate that, as with continuous relationships, this approach can 
give unsatisfactory results unless there is no overlap in the  y -variable 
and clear separation between the two morphs ( Fig.   3 ). 

 The two analyses described, thus approach the fundamental 
problem of assigning individuals into morphs by dividing a 
bivariate plane into two using either a vertical ( Eberhard & 
Gutierrez, 1991 ) or a horizontal ( Kotiaho & Tomkins, 2001 ) 
straight line. An obvious alternative is to use a line with a slope 
intermediate between these extremes.  Cook and Bean (2006)  
described a discontinuous relationship in male fig wasp mandi-
ble allometry with overlap in both the  x - and the  y -variable 
( Fig.   1c ). They found both the Eberhard and Gutierrez model 
and the Kotiaho and Tomkins model to be inadequate for sepa-
rating the morphs, and separated male fig wasps into morphs 
based on examination of a frequency histogram of the ratio of 
mandible length to body size. This was distinctly bimodal, and 
a separation of morphs based on the point where the two distri-
butions met on the histogram, gave a satisfactory separation of 
individuals. As the separation of the morphs is based on whether 
the individual has a ratio of character size to body size that is 
more or less than a fixed amount, this is equivalent to separating 
morphs using a straight line through the origin with slope equal 
to the selected ratio of  y : x . 

 This distinction worked well in the case of the fig wasps, but 
this approach again suffers from a number of potential  problems. 
Firstly, the procedure relies on visual inspection of histograms 

to identify the point of separation between the morphs: this is 
obviously subjective and may give rather different answers 
depending on, for example, the number of bins that the data are 
divided into. This can be avoided by fitting a curve such as a 
kernel density estimator to the frequency distribution (see 
   Fig.   4b ) and identifying the minimum point between the two 
modes from the fitted curve. Secondly, as with the other analy-
ses, models fitted on the basis of this approach will be calcu-
lated with incorrect AIC scores and degrees of freedom. Thirdly, 
because the line is forced through the origin, the slope will be 
largely determined by the relative sizes of the measure of the 
putative dimorphic character and the measure of body size used. 
If the character in question is relatively small in comparison to 
the body size measure, the slope will be shallow, and if it is 
relatively large the slope will be steep, simply as a consequence 
of where the dataset lies in relation to the origin. 

 Given the problems arising with this last technique because 
the line is constrained to pass through the origin, a kind of 
statistical  reductio ad absurdum  leads to the conclusion that 
perhaps the best thing to do might be to use a method whereby 
lines separating the data into two groups are allowed to vary in 
both slope and intercept. The simple (if inelegant) way to do 
this is simply to produce a matrix with all possible combina-
tions of intercept and slope between selected intervals between 
predefined minima and maxima. For each line all the datapoints 
can be divided into those above and those below the predicted 
value for that pronotum width and a linear model can be fitted 
with  morph  as a factor and pronotum width as a continuous 
variable. The models can be compared on the basis of their 
goodness of fit ( r  2  or AIC: these will give identical rankings in 
this case). This will find the best line for separating morphs 
from the predefined subset determined by the intervals and the 
minima and maxima chosen. In practice, this is computation-
ally intensive and will take a long time for those with slower 
computers (code to do this in R is available from the author). 
It can prove difficult to decide which of a multitude of lines 
giving essentially identical fits should be used and even 
then the outcome may be no more useful than that from the 
other methods described here: see Supporting Information 
Example 2. 

 A further possibility is to separate individuals into different 
morphs without a ‘rule’ of this sort. One way to do this is by the 
use of finite mixture models. These are a class of statistical 
models developed for the purpose of analysing datasets that 
consist of mixtures of data from two or more populations when 
the provenance of each data point is unknown, by using an  
expectation maximisation  algorithm to separate data points into 
two or more groups. The groups can be distributed along a sin-
gle axis, as a mixture of two normal distributions (or other forms 
of frequency distribution), or they can be distributed in more 
than one dimension. From our point of view, a mixture model 
that treats the data as a mixture of two linear regressions seems 
appropriate ( McLachlan & Peel, 2000 ). This approach sounds 
to be an attractive and general solution to the problem of sepa-
rating data points in these discontinuous relationships, but in 
practice fitting mixture models to discontinuous datasets  usually 
seems to lead to a large number of datapoints being misclassi-
fied (see the worked examples below). Nonetheless, we should 
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not discount this approach and it should be considered if other, 
simpler analysis techniques are not helpful. 

 An alternative use for finite mixture models arises when 
using the technique for separating morphs, originally described 
by  Cook and Bean (2006) , as discussed above. By treating the 
set of ratios of trait size : body size as a univariate mixture of 
two normal (or other) distributions, it is possible to separate 
morphs using a finite mixture model. This may be helpful in 
cases where there is no clear bimodality in the frequency distri-
bution. If there is a lot of overlap between the morphs, for 
 example, the distribution of ratios could be skewed or symmet-
rical with a broad  plateau . In such cases the mixture model 
would still allow a objective separation to be made, and the 
posterior probability calculated for each datapoint would give 
an indication of confidence for each classification. 

 Thus, all of the analysis techniques that might be used for 
separating individuals into one morph or another are flawed in 
some way, and given the variable nature of these discontinuous 
allometries there is no one analysis that will be the best in 
all cases. Given this, a pragmatic approach is called for, with 
careful visual inspection of scatterplots followed by comparison 
of the results from the techniques most likely to produce satis-
factory results. Once the datapoints have been classified, then it 
may be necessary to compare the fit of a discontinuous model 
with a continuous one. If there is negligible overlap between 
morphs in the  x -variable, then the  Eberhard and Gutierrez (1991)  
model 2 may be appropriate: otherwise, a general linear model 
with morph as a factor and the  x -variable as a continuous varia-

ble should be used. This model can then be compared with 
chosen models with no discontinuity (simple linear, curved or 
continuous models with a switchpoint, for example), either by 
means of comparing AIC or by partial  F -tests. In the former 
case, the AIC score for the discontinuous model should have 
2 added to it to take into account the extra parameter, namely the 
criterion used to separate the two morphs. In the latter case, the 
residual degrees of freedom of the discontinuous model should 
have 1 subtracted before the  F -test is carried out. 

 Once it has been decided whether the data are best described 
by a discontinuous model or not, the remaining description of 
the data is to quantify the relationship between body size and 
morph. If there is little or no overlap between the two morphs, 
then a switchpoint estimated by the Eberhard and Gutierrez 
procedure might be the best approach. 95% confidence limits 
can be estimated by bootstrapping if necessary. More commonly, 
however, there will be overlap in the body sizes that develop 
into each morph. In this case, the whole concept of a switch-
point of body size becomes questionable. A more suitable ap-
proach is to code each datapoint as a 0 or a 1 for minor and 
major morphs respectively, and to fit a generalised linear model 
with binomial errors and a logit link to these data, with body 
size as a continuous explanatory variable. The fitted model will 
give the probability of developing into a major or a minor morph 
across the range of body sizes. An alternative is to fit a non-
 parametric smoother such as a cubic spline to these binomial 
data ( Tomkins & Brown, 2004 ), but the GLM approach is more 
informative, since it provides information on both the steepness 

    Fig.   4.     Horn allometry in  Allomyrina dicho-
toma , as discussed in worked example 4. (a) 
log horn length plotted against log elytra 
length. The solid line is the fi tted breakpoint 
model from Segmented, and the dotted line is 
the fi tted sigmoid model. (b) Histogram show-
ing the frequency distribution of the  ratios of 
log horn length to log elytron length. The line 
shows a non-parametric probability density 
estimate from a kernel density estimator. (c) 
As (a), but with the fi tted discontinuous model 
with parallel slopes for both morphs. (d) The 
probability of a male beetle developing into a 
major morph as determined by fi tting a gen-
eral linear model with  binomial errors and a 
logit link to a dataset with majors coded as 1 
and minors coded as zero, with body size as a 
continuous explanatory variable. The fi tted 
line is          y   =    e    –   94.9  +  29.8    x  /  (  1    +     e    –   94.9   +   29.8  x    )     .    
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of the relationship (the slope of the fitted model) and its location 
(the easiest measure of this to interpret is the value of the  x -
 variable at which 50% of individuals are predicted to develop 
into each morph). Furthermore, the GLM can easily be extended 
to allow comparisons between populations or experimental 
treatments by including these as added factors in the model.  

  Worked example 2: horn allometry in Allomyrina 
dichotoma 

  Allomyrina dichotoma  (= Trypoxylus dichotomus ) is a horned 
beetle that has been the subject of interest recently, from 
 behavioural ecologists interested in subjects including contests 
 between males, the fitness consequences of size and horn length, 
and the relationship between size and predation risk ( Siva-Jothy, 
1987; Setsuda  et al. , 1999; Hongo, 2003, in press; Karino  et al. , 
2004, 2005; Plaistow  et al. , 2005 ). A log – log scatterplot of horn 
length against body size [ Fig.   4a , data from  Plaistow  et al.  (2005) ] 
clearly shows a non-linear relationship, but it is not obvious 
whether these data will be best described by a continuous or a 
discontinuous relationship. Datasets from this beetle have been 
modelled by different authors as a continuous relationship with a 
switchpoint ( Hongo, 2003 , in press), as a continuous sigmoid 
curve ( Karino  et al. , 2004 ) and as a discontinuous relationship 
( Plaistow  et al. , 2005 ). In an attempt to resolve this I will compare 
a continuous breakpoint model, a continuous sigmoidal model, 
and two discontinuous models on the basis of their AIC scores to 
determine which gives the best description of the data. 

  Figure   4a  shows the fitted breakpoint model from Segmented 
and a sigmoid model fitted using the nls (non-linear least squares) 
function in R. The sigmoid model shown is the one used by 
 Moczek  et al.  (2002) , but other sigmoid functions give largely 
similar fits. Both models describe the data reasonably well 
towards the larger body sizes, but in the region between a log 
elytron length of 3.25 – 3.35 the fit is not so good, with a wide scat-
ter of data points around the line, and the sigmoid curve appears 
to be overestimating horn length at the smaller body sizes. 
 Figure   4b  shows the frequency distribution of the ratios of log 
horn length to log elytron length to allow morphs to be distin-
guished using the Cook and Bean approach. The distribution does 
appear to be bimodal, and fitting a non-parametric probability 
density estimate with a kernel density estimator enables the 
 minimum point between the two modes to be identified as 0.835. 
Models were fitted with and without an interaction term between 
morph and log elytron length, to allow a test of whether the differ-
ent morphs vary in the slope of the relationship or just in the inter-
cept. The one shown is the model without an interaction.  Figure   4c  
shows the data with the fitted model without an interaction term. 

 Visual inspection of    Fig.   4c  suggests that the discontinuous 
model describes the data better than the two continuous models 
in  Fig.   4a . Although there is a suggestion that horn size at the 
largest body sizes is being underestimated, this does not appear 
to be serious when diagnostic plots are examined. This is con-
firmed by the AIC scores for the fitted models. The breakpoint 
model scores  – 207, the sigmoid model  – 212, the discontinuous 
model without an interaction term scores  – 313, and the model 
with the interaction term  – 312. Both discontinuous models 

therefore give a substantially better description of the data than 
the continuous models. However, adding the interaction term 
does not lead to any notable decrease in the AIC score when 
compared to the model without the interaction term. The infor-
mation theoretical approach to model selection would then lead 
to the conclusion that these two models are equally valid descrip-
tions of the data. The alternative approach based on comparing 
models using  F -tests ( Crawley, 2002 ) would conclude that the 
minimal adequate model is the one without an interaction term, 
since these are not significantly different when compared with a 
partial  F -test ( F  138,137    =   0.6625,  P    =   0.417).  Figure   4d  shows 
the probability of a beetle developing into a minor or a major, 
calculated by fitting a logistic model to the data on morph coded 
as 1 for a major and 0 for a minor.  

  Conclusion 

 An overriding theme of this paper is that there is no single 
analysis that is suitable for all forms of non-linear allometry, 
especially discontinuous allometries. A pragmatic approach is 
clearly necessary, with careful choice of the most appropriate 
analysis being made on the basis of the examination of scatter-
plots and the results of preliminary analysis. The following 
gives a summary of what I believe to be the key steps in the 
analysis of a non-linear allometry: 

     1     Plot a log – log scatterplot of the data, paying attention to 
the relative axis scaling. Look at the scatterplot and decide 
whether there is a clear discontinuous relationship, a clear 
continuous relationship that is not a straight line, a straight 
line relationship, or whether it is not possible to determine the 
nature of the relationship from the scatterplot.  

    2     If the latter, fi t a simple linear regression and examine the 
standard diagnostic plots. If there is no indication of any 
systematic deviation from a straight line, then the analysis 
need go no further.  

    3     If the scatterplot appears to show a continuous relationship 
that is not well described by a straight line, select some 
appropriate models that might explain the data well. These 
can include a breakpoint model, curved models such as a 
quadratic model and a simple linear model if the results from 
(2) are inconclusive. Fit the models to the data and compare 
them on the basis of AIC or  F -tests. Once the best model 
(or models) has been identifi ed, then normal model-checking 
procedures should be followed.  

    4     If the scatterplot indicates that a discontinuous relationship 
might exist, then it will be necessary to select a method for 
distinguishing between morphs. If there is little overlap in 
the  X -variable then the Eberhard and Gutierrez model may 
be used: otherwise, the Cook and Bean approach or possibly 
a fi nite mixture model might give good separation. Once a 
suitable means of separating individual datapoints by morph 
has been identifi ed, models can be fi tted to the data on this 
basis and compared with other possible models using AIC 
or  F -tests, so long as the AIC score or the degrees of freedom 
are adjusted to account for the extra parameter that has been 
estimated. If a discontinuous model proves to be the best 
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description of the data then logistic regression can be used to 
estimate how the probability of developing into either morph 
varies with body size.   

 There are some analyses that could potentially be useful in 
addressing the questions discussed here, most obviously the use 
of geometric morphometric techniques to separate morphs. 
Geometric morphometric techniques [see, for example,  Zelditch 
 et al.  (2004) ] are a promising future avenue to follow, assuming 
that trait shapes as well as sizes change with morph in polyphenic 
species, but to date, tests of this have not been carried out. 

 It must always be borne in mind that it may not be possible to 
separate an allometric relationship into two morphs in a satisfac-
tory way, even when data from other samples of that species 
clearly show dimorphism. A further point that must be empha-
sised is that demonstrating a better fit for a model that assumes 
dimorphism (i.e. a switchpoint model) is not in itself convincing 
evidence for the existence of, for example, alternative mating 
tactics or morphs that differ in any other aspect of their behaviour 
or physiology. Finding a better fit for a model that assumes a 
dimorphism, shows only that for the models tested the best 
description of the dataset in question is achieved by that particular 
model. Especially in cases when the pattern is not particularly 
clear then these analyses are only the first step towards convinc-
ingly demonstrating the existence of a polyphenism, and ideally 
the analysis of the allometric relationship should be validated 
with behavioural or physiological data from the species in ques-
tion. Particular care must be taken with  switchpoints  in continu-
ous datasets. Single datapoints with high leverages can seriously 
bias these analyses (see Supporting Information Example 1), and 
possible contributory factors such as changes in shape or changes 
in landmark orientation might well lead to apparent positive 
results in these cases when in fact there is no true polyphenism.   

  Supporting Information 

 Additional Supporting Information may be found in the online 
version of this article. 
Three worked examples of continuous and discontinuous 
allometric data from three more insects:

  Example 1.  The dung beetle  Onthophagus binodis . 

  Example 2.  The Stag beetle  Lucanus cervus . 

  Example 3.  The earwing  Forficula auricularia . 

 Please note: Wiley-Blackwell are not responsible for the content 
or functionality of any supporting materials supplied by the 
authors. Any queries (other than missing material) should be 
directed to the corresponding author for the article.  

   Notes 

 1         The output from Segmented can be interpreted in exactly the 
same way as the Eberhard and Gutierrez model: the fi tted 

model is essentially the same [ Y    =    �  0     +     �  1  X     +     �  2  ( X  –  X  0 ) D ] 
with the intercept from segmented   =    �  0,  the fi rst coeffi cient   =    �  1  
and the second coeffi cient (U.variable.name)   =    �  2 , and 
psi   =    X  0 .   
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